skip to main content


Search for: All records

Creators/Authors contains: "Baksa, Steven M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Oxides of p-block metals (e.g., indium oxide) and semimetals (e.g., antimony oxide) are of broad practical interest as transparent conductors and light absorbers for solar photoconversion due to the tunability of their electronic conductivity and optical absorption. Comparatively, these oxides have found limited applications in solar-to-hydrogen photocatalysis primarily due to their high electronegativity, which impedes electron transfer for converting protons into molecular hydrogen. We have shown recently that inserting s-block metal cations into p-block oxides is effective at lowering electronegativities while affording further control of band gaps. Here, we explain the origins of this dual tunability by demonstrating the mediator role of s-block metal cations in modulating orbital hybridization while not contributing to frontier electronic states. From this result, we carry out a comprehensive computational study of 109 ternary oxides of s- and p-block metal elements as candidate photocatalysts for solar hydrogen generation. We downselect the most desirable materials using band gaps and band edges obtained from Hubbard-corrected density-functional theory with Hubbard parameters computed entirely from first principles, evaluate the stability of these oxides in aqueous conditions, and characterize experimentally four of the remaining materials, synthesized with high phase uniformity, to assess the accuracy of computational predictions. We thus propose seven oxide semiconductors, including CsIn3O5, Sr2In2O5, and KSbO2 which, to the extent of our literature review, have not been previously considered as water-splitting photocatalysts. 
    more » « less
  2. Abstract

    Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.

     
    more » « less